Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.006
Filtrar
1.
ACS Omega ; 9(14): 16536-16546, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617606

RESUMO

Unfavorable mobility ratios in heterogeneous reservoirs have resulted in progressively poor waterflood sweep efficiency and diminishing production. In order to address this issue, our study has developed amphiphilic-structured nanoparticles aimed at enhancing the microscopic displacement capability and oil displacement efficiency. First, the transport process of Janus nanoparticles in porous media was investigated. During the water flooding, Janus nanoparticle injection, and subsequent water flooding stages, the injection pressure increased in a "stepped" pattern, reaching 0.023, 0.029, and 0.038 MPa, respectively. Second, emulsification effects and emulsion viscosity experiments demonstrated that the amphiphilic structure improved the interaction at the oil-water interface, reducing the seepage resistance of the oil phase through emulsification. In porous media, Janus nanoparticles transported with water exhibit 'self-seeking oil' behavior and interact with the oil phase, reducing the viscosity of the oil phase from 19 to 5 mPa·s at 80 °C. Finally, the core model displacement experiment verified the characteristics of Janus nanoparticles in improving the oil-water mobility ratio. Compared with the water flooding stage, the recovery percent increased by 20.8%, of which 13.7% was attributed to the subsequent water flooding stage. Utilizing the asymmetry of the Janus particle structure can provide an effective path to enhanced oil recovery in inhomogeneous reservoirs.

2.
J Sci Food Agric ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619986

RESUMO

BACKGROUND: Sea buckthorn has the functions of anti-oxidation, anti-tumor, anti-inflammation and regulating energy metabolism. In order to investigate the effects of sea buckthorn powder and sea buckthorn flavonoids on the antioxidant properties, immune function, and muscle fatty acid composition of common carp, an oral feeding experiment was carried out. RESULTS: The administration of glucose significantly reduced the levels of GSH and the activity of T-AOC enzyme in serum and hepatopancreas, while concurrently up-regulating the level of MDA (P < 0.05). Conversely, oral intake of sea buckthorn powder and flavonoids increased antioxidant enzyme activity and decreased MDA levels. In terms of antioxidant molecular indicators, sea buckthorn powder and sea buckthorn flavonoids significantly increased the mRNA levels of nuclear factor NF-E2-related factor (nrf2) in the hepatopancreas and muscle. Meanwhile, mRNA expression levels of downstream antioxidant-related genes (gr, cat, gpx, and sod) regulated by Nrf2 were also up-regulated. In the immune aspects, the mRNA expression levels of the pro-inflammatory cytokines, such as interleukin-6 (il-6), interleukin-1ß (il-1ß) and nuclear factor-κB (nf-κb) were reduced, but the expressions of anti-inflammatory cytokines, such as growth factor-ß (tgf-ß) and interleukin-10 (il-10) were enhanced in the head kidney and spleen tissues after oral administration with sea buckthorn. In terms of muscle fatty acid composition, the ratio of n-3 PUFA/n-6 PUFA was notably higher after administering sea buckthorn flavonoids than that of the glucose group (P < 0.05). CONCLUSION: This study demonstrated that oral administration of sea buckthorn powder and sea buckthorn flavonoids significantly enhanced the antioxidant capacity and immune response, improved the muscle fatty acid compositions in common carp, and also mitigated the adverse effects of glucose treatment to a certain extent. This article is protected by copyright. All rights reserved.

3.
Cytojournal ; 21: 12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628288

RESUMO

Objective: This study aimed to identify differential metabolites and key metabolic pathways between lung adenocarcinoma (LUAD) tissues and normal lung (NL) tissues using metabolomics techniques, to discover potential biomarkers for the early diagnosis of lung cancer. Material and Methods: Forty-five patients with primary ground-glass nodules (GGN) identified on computed tomography imaging and who were willing to undergo surgery at Shanghai General Hospital from December 2021 to December 2022 were recruited to the study. All participants underwent video thoracoscopy surgery with segmental or wedge resection of the lung. Tissue samples for pathological examination were collected from the site of ground-glass nodules (GGN) lesion and 3 cm away from the lesion (NL). The pathology results were 35 lung adenocarcinoma (LUAD) cases (13 invasive adenocarcinoma, 14 minimally invasive adenocarcinoma, and eight adenocarcinoma in situ), 10 benign samples, and 45 NL tissues. For the untargeted metabolomics technique, 25 LUAD samples were assigned as the case group and 30 NL tissues as the control group. For the targeted metabolomics technique, ten LUAD samples were assigned as the case group and 15 NL tissues as the control group. Samples were analyzed by untargeted and targeted metabolomics, with liquid chromatography-tandem mass spectrometry detection used as part of the experimental procedure. Results: Untargeted metabolomics revealed 164 differential metabolites between the case and control groups, comprising 110 up regulations and 54 down regulations. The main metabolic differences found by the untargeted method were organic acids and their derivatives. Targeted metabolomics revealed 77 differential metabolites between the case and control groups, comprising 69 up regulations and eight down regulations. The main metabolic changes found by the targeted method were fatty acids, amino acids, and organic acids. The levels of organic acids such as lactic acid, fumaric acid, and malic acid were significantly increased in LUAD tissue compared to NL. Specifically, an increased level of L-lactic acid was found by both untargeted (variable importance in projection [VIP] = 1.332, fold-change [FC] = 1.678, q = 0.000) and targeted metabolomics (VIP = 1.240, FC = 1.451, q = 0.043). Targeted metabolomics also revealed increased levels of fumaric acid (VIP = 1.481, FC = 1.764, q = 0.106) and L-malic acid (VIP = 1.376, FC = 1.562, q = 0.012). Most of the 20 differential fatty acids identified were downregulated, including dodecanoic acid (VIP = 1.416, FC = 0.378, q = 0.043) and tridecane acid (VIP = 0.880, FC = 0.780, q = 0.106). Furthermore, increased levels of differential amino acids were found in LUAD samples. Conclusion: Lung cancer is a complex and heterogeneous disease with diverse genetic alterations. The study of metabolic profiles is a promising research field in this cancer type. Targeted and untargeted metabolomics revealed significant differences in metabolites between LUAD and NL tissues, including elevated levels of organic acids, decreased levels of fatty acids, and increased levels of amino acids. These metabolic features provide valuable insights into LUAD pathogenesis and can potentially serve as biomarkers for prognosis and therapy response.

4.
Heliyon ; 10(8): e29141, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628764

RESUMO

Over 50 genetic human disorders are attributed to the irregular expansion of microsatellites. These expanded microsatellite sequences can experience bidirectional transcription, leading to new reading frames. Beyond the standard AUG initiation or adjacent start codons, they are translated into proteins characterized by disease-causing amino acid repeats through repeat-associated non-AUG translation. Despite its significance, there's a discernible gap in comprehensive and objective articles on RAN translation. This study endeavors to evaluate and delineate the contemporary landscape and progress of RAN translation research via a bibliometric analysis. We sourced literature on RAN translation from the Web of Science Core Collection. Utilizing two bibliometric analysis tools, CiteSpace and VOSviewer, we gauged individual impacts and interactions by examining annual publications, journals, co-cited journals, countries/regions, institutions, authors, and co-cited authors. Following this, we assessed the co-occurrence and bursts of keywords and co-cited references to pinpoint research hotspots and trending in RAN translation. Between 2011 and 2022, 1317 authors across 359 institutions from 34 countries/regions contributed to 250 publications on RAN translation, spread across 118 academic journals. This article presents a systematic, objective, and comprehensive analysis of the current literature on RAN translation. Our findings emphasize that mechanisms related to C9orf72 ALS/FTD are pivotal topics in the realm of RAN translation, with cellular stress and the utilization of small molecule marking the trending research areas.

5.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612721

RESUMO

The improvement of in vitro embryo development is a gateway to enhance the output of assisted reproductive technologies. The Wnt and Hippo signaling pathways are crucial for the early development of bovine embryos. This study investigated the development of bovine embryos under the influence of a Hippo signaling agonist (LPA) and a Wnt signaling inhibitor (DKK1). In this current study, embryos produced in vitro were cultured in media supplemented with LPA and DKK1. We comprehensively analyzed the impact of LPA and DKK1 on various developmental parameters of the bovine embryo, such as blastocyst formation, differential cell counts, YAP fluorescence intensity and apoptosis rate. Furthermore, single-cell RNA sequencing (scRNA-seq) was employed to elucidate the in vitro embryonic development. Our results revealed that LPA and DKK1 improved the blastocyst developmental potential, total cells, trophectoderm (TE) cells and YAP fluorescence intensity and decreased the apoptosis rate of bovine embryos. A total of 1203 genes exhibited differential expression between the control and LPA/DKK1-treated (LD) groups, with 577 genes upregulated and 626 genes downregulated. KEGG pathway analysis revealed significant enrichment of differentially expressed genes (DEGs) associated with TGF-beta signaling, Wnt signaling, apoptosis, Hippo signaling and other critical developmental pathways. Our study shows the role of LPA and DKK1 in embryonic differentiation and embryo establishment of pregnancy. These findings should be helpful for further unraveling the precise contributions of the Hippo and Wnt pathways in bovine trophoblast formation, thus advancing our comprehension of early bovine embryo development.


Assuntos
Apoptose , Embrião de Mamíferos , Feminino , Gravidez , Bovinos , Animais , Diferenciação Celular , Contagem de Células , Procedimentos Clínicos
6.
BMB Rep ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627947

RESUMO

The gut microbiota, an intricate community of bacteria residing in the gastrointestinal system, assumes a pivotal role in various physiological processes. Beyond its function in food breakdown and nutrient absorption, gut microbiota exerts a profound influence on immune and metabolic modulation by producing diverse gut microbiota-generated metabolites (GMGMs). These small molecules hold potential to impact host health via multiple pathways, which exhibit remarkable diversity, and have gained increasing attention in recent studies. Here, we elucidate the intricate implications and significant impacts of four specific metabolites, Urolithin A (UA), equol, Trimethylamine N-oxide (TMAO), and imidazole propionate, in shaping human health. Meanwhile, we also look into the advanced research on GMGMs, which demonstrate promising curative effects and hold great potential for further clinical therapies. Notably, the emergence of positive outcomes from clinical trials involving GMGMs, typified by UA, emphasizes their promising prospects in the pursuit of improved health and longevity. Collectively, the multifaceted impacts of GMGMs present intriguing avenues for future research and therapeutic interventions.

7.
Circ Res ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629274

RESUMO

BACKGROUND: Medial arterial calcification is a chronic systemic vascular disorder distinct from atherosclerosis and is commonly observed in patients with chronic kidney disease, diabetes, and aging individuals. We previously showed that NR4A3 (nuclear receptor subfamily 4 group A member 3), an orphan nuclear receptor, is a key regulator in apo (apolipoprotein) A-IV-induced atherosclerosis progression; however, its role in vascular calcification is poorly understood. METHODS: We generated NR4A3-/- mice and 2 different types of medial arterial calcification models to investigate the biological roles of NR4A3 in vascular calcification. RNA-seq was performed to determine the transcriptional profile of NR4A3-/- vascular smooth muscle cells under ß-glycerophosphate treatment. We integrated CUT&Tag analysis and RNA-seq data to further investigate the gene regulatory mechanisms of NR4A3 in arterial calcification and target genes regulated by histone lactylation. RESULTS: NR4A3 expression was upregulated in calcified aortic tissues from chronic kidney disease mice, 1,25(OH)2VitD3 overload-induced mice, and human calcified aorta. NR4A3 deficiency preserved the vascular smooth muscle cell contractile phenotype, inhibited osteoblast differentiation-related gene expression, and reduced calcium deposition in the vasculature. Further, NR4A3 deficiency lowered the glycolytic rate and lactate production during the calcification process and decreased histone lactylation. Mechanistic studies further showed that NR4A3 enhanced glycolysis activity by directly binding to the promoter regions of the 2 glycolysis genes ALDOA and PFKL and driving their transcriptional initiation. Furthermore, histone lactylation promoted medial calcification both in vivo and in vitro. NR4A3 deficiency inhibited the transcription activation and expression of Phospho1 (phosphatase orphan 1). Consistently, pharmacological inhibition of Phospho1-attenuated calcium deposition in NR4A3-overexpressed vascular smooth muscle cells, whereas overexpression of Phospho1 reversed the anticalcific effect of NR4A3 deficiency in vascular smooth muscle cells. CONCLUSIONS: Taken together, our findings reveal that NR4A3-mediated histone lactylation is a novel metabolome-epigenome signaling cascade mechanism that participates in the pathogenesis of medial arterial calcification.

8.
Adv Mater ; : e2402282, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577824

RESUMO

Biological tissues, such as tendons or cartilage, possess high strength and toughness with very low plastic deformations. In contrast, current strategies to prepare tough hydrogels commonly utilize energy dissipation mechanisms based on physical bonds that lead to irreversible large plastic deformations, thus limiting their load-bearing applications. This article reports a strategy to toughen hydrogels using fibrillar connected double networks (fc-DN), which consist of two distinct but chemically interconnected polymer networks, that is, a polyacrylamide network and an acrylated agarose fibril network. The fc-DN design allows efficient stress transfer between the two networks and high fibril alignment during deformation, both contributing to high strength and toughness, while the chemical crosslinking ensures low plastic deformations after undergoing high strains. The mechanical properties of the fc-DN network can be readily tuned to reach an ultimate tensile strength of 8 MPa and a toughness of above 55 MJ m-3, which is 3 and 3.5 times more than that of fibrillar double network hydrogels without chemical connections, respectively. The application potential of the fc-DN hydrogel is demonstrated as load-bearing damping material for a jointed robotic lander. The fc-DN design provides a new toughening mechanism for hydrogels that can be used for soft robotics or bioelectronic applications.

9.
Talanta ; 274: 126026, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38604039

RESUMO

Tracking the variation of Cl- timely within the crevice is of great significance for comprehending the dynamic mechanism of crevice corrosion. The reported chloride ion selective electrodes are difficult to realize the long-time Cl- detection inside the confined crevice, due to their millimeter size or a relative limited lifespan. For this purpose, an Ag/AgCl ultra-micro sensor (UMS) with a radius of 12.5 µm was fabricated and optimized using laser drawing and electrodeposition techniques. Results show the AgCl film's structure is significantly impacted by the deposited current density, and further affects the linear response, life span and stability of Ag/AgCl UMS. The UMS prepared at current density of 0.1 mA/cm2 for 2 h shows a rapid response (several seconds), excellent stability and reproducibility, strong acid/alkali tolerance, sufficient linearity (R2 > 0.99), and long lifespan (86 days). Moreover, combined with the potentiometric mode of scanning electrochemical microscope (SECM), the Ag/AgCl UMS was successfully applied to monitor the in-situ radial Cl- concentration in micro-regions inside a 100 µm gap of stainless steel. The findings demonstrated that there was obvious radial difference in Cl- concentration inside the crevice, where the fastest rise in Cl- concentration was at the opening. The proposed method which combines the UMS with SECM has attractive practical applications for microzone Cl- monitoring in real time inside crevice. It may further promote the study of other localized corrosion mechanism and the development of microzone ions detection method.

10.
Commun Biol ; 7(1): 427, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589700

RESUMO

Aging is a global challenge, marked in the lungs by function decline and structural disorders, which affects the health of the elderly population. To explore anti-aging strategies, we develop a dynamic atlas covering 45 cell types in human lungs, spanning from embryonic development to aging. We aim to apply the discoveries of lung's development to address aging-related issues. We observe that both epithelial and immune cells undergo a process of acquisition and loss of essential function as they transition from development to aging. During aging, we identify cellular phenotypic alternations that result in reduced pulmonary compliance and compromised immune homeostasis. Furthermore, we find a distinctive expression pattern of the ferritin light chain (FTL) gene, which increases during development but decreases in various types of lung cells during the aging process.


Assuntos
Envelhecimento , Pulmão , Idoso , Humanos , Pulmão/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Homeostase
11.
ACS Omega ; 9(11): 12914-12926, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524421

RESUMO

The fracture of coal is the main channel of gas flow and an important factor affecting the stability and efficiency of gas drainage boreholes. The coal structure, the development of hole cracks, and the degree of deformation are different. It affects the strength and mechanical deformation characteristics of coal to a great extent. In order to investigate the law of fracture evolution around the borehole of fractured coal, uniaxial and triaxial compression tests of raw coal samples have been carried out. The stress field evolution characteristics of fractured coal under compression were analyzed by Particle Flow Code (PFC2D). The strength, deformation, and fracture evolution behavior of fractured coal around boreholes under different confining pressures were studied. The results show that the compressive strength and fracture morphology evolution characteristics of coal around the hole are obviously related to the confining pressure and fracture occurrence of raw coal. The borehole structure itself has an important influence on the distribution location of the shear failure zone of the fracture around the hole, and its influence degree increases with the decrease of borehole confining pressure. During the deformation of coal with cracks around the hole, the initiation, propagation, and union behavior of cracks are related to the crack angle ß. The cracks with ß 0 and 180° are most easily closed during compression and the cracks with ß 90° have little effect on the crack propagation zone. When the crack angle ß is 45°, it is most easy to sprout and expand at the end; when the coal is compressed to the ultimate strength, the increase rate of the tensile crack increases, and the polymerization and combination behavior of the crack is more obvious. The evolution cloud map of the stress field can better reflect the evolution characteristics of fracture development, expansion, and fracture in the process of coal loading. Studying the failure behavior and fracture evolution mechanism of the coal around the hole can better predict and control the gas migration and extraction effect, which is of great significance to prevent the occurrence of gas accidents.

12.
World J Gastroenterol ; 30(8): 943-955, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38516249

RESUMO

BACKGROUND: Pancreatic surgery is challenging owing to the anatomical characteristics of the pancreas. Increasing attention has been paid to changes in quality of life (QOL) after pancreatic surgery. AIM: To summarize and analyze current research results on QOL after pancreatic surgery. METHODS: A systematic search of the literature available on PubMed and EMBASE was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Relevant studies were identified by screening the references of retrieved articles. Studies on patients' QOL after pancreatic surgery published after January 1, 2012, were included. These included prospective and retrospective studies on patients' QOL after several types of pancreatic surgeries. The results of these primary studies were summarized inductively. RESULTS: A total of 45 articles were included in the study, of which 13 were related to pancreaticoduodenectomy (PD), seven to duodenum-preserving pancreatic head resection (DPPHR), nine to distal pancreatectomy (DP), two to central pancreatectomy (CP), and 14 to total pancreatectomy (TP). Some studies showed that 3-6 months were needed for QOL recovery after PD, whereas others showed that 6-12 months was more accurate. Although TP and PD had similar influences on QOL, patients needed longer to recover to preoperative or baseline levels after TP. The QOL was better after DPPHR than PD. However, the superiority of the QOL between patients who underwent CP and PD remains controversial. The decrease in exocrine and endocrine functions postoperatively was the main factor affecting the QOL. Minimally invasive surgery could improve patients' QOL in the early stages after PD and DP; however, the long-term effect remains unclear. CONCLUSION: The procedure among PD, DP, CP, and TP with a superior postoperative QOL is controversial. The long-term benefits of minimally invasive versus open surgeries remain unclear. Further prospective trials are warranted.


Assuntos
Neoplasias Pancreáticas , Qualidade de Vida , Humanos , Estudos Retrospectivos , Pâncreas/cirurgia , Pancreatectomia/efeitos adversos , Pancreatectomia/métodos , Pancreaticoduodenectomia/efeitos adversos , Pancreaticoduodenectomia/métodos , Neoplasias Pancreáticas/cirurgia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/cirurgia
13.
ACS Omega ; 9(8): 9424-9431, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434821

RESUMO

The class G oil well cement is a type of special cement that can be subjected to a high temperature formation environment. It was found that the class G cement tail slurry with a low polycarboxylic retarder dosage (usually ≤1% by weight of cement) was more prone to cause the abnormal gelation phenomenon (AGP) than the lead slurry with a high retarder dosage at a high temperature (usually when T ≥ 120 °C). This study aimed at the occurrence mechanism of this unfavorable phenomenon that seriously endangers the cementing security. Results showed that the abnormal gelatinous region underwent premature hydration; namely, the calcium hydroxide and calcium silicate hydrate (C-S-H) content were all higher than the nongelatinous region, while the copolymer content was the opposite. Correspondingly, the theory of "premature hydration and crystal nucleation" was proposed to explain the abnormal gelation mechanism of a cementing tail slurry with an insufficient retarder dosage. Furthermore, a novel functionalized copolymer retarder "PAIANS" was synthesized to alleviate the AGP.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38518148

RESUMO

Objective: Currently, there is little information about the risk of sudden cardiac death and its predictors in aortic valve stenosis patients after transcatheter aortic valve replacement (TAVR). Therefore, we conducted a large sample cohort study on TAVR patients to evaluate the predictive factors and incidence of heart failure death caused by advanced heart failure (AHF) and sudden cardiac death. Furthermore, a nomogram model to predict its risk was constructed. Methods: This study retrospectively analyzed the data of 241 consecutive participants who had received TAVR treatment for aortic valve stenosis in our hospital from January 2020 to January 2022. The characteristics of the subjects, including myocardial zymogram, renal function, biochemical parameters, and cardiac ultrasound parameters, were collected. Moreover, a nomogram was constructed to predict the risk of sudden cardiac death and its predictors in patients after transcatheter aortic valve replacement (TAVR). The model was validatedinternally using measures of calibration and decision curve analysis. Results: Six independent risk factors(Age, smoking, diabetes, glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, and fasting blood glucose) were finally recruited into the nomogram model to predict the risk of advanced heart failure and/or cardiogenic shock in AS patients treated by TAVR. Besides, the decision curve analysis and receiver operating characteristic curve indicated that the nomogram prediction models showed positive clinical benefits. Conclusions: The Age, smoking, diabetes, glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, and fasting blood glucose are the independent risk factors for advanced heart failure and/or cardiogenic shock in AS patients treated by TAVR. The construction of nomograms is beneficial in predicting the risk of advanced heart failure and/or cardiogenic shock in AS patients treated by TAVR.

15.
Microorganisms ; 12(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543603

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious and pathogenic infectious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). It manifests as reproductive disorders in sows and respiratory disorders in piglets. PRRSV infects swine herds with symptoms such as abortions, stillbirths, and mummified fetuses in gestating sows. Piglets mainly experience abdominal respiration and respiratory symptoms. To date, the prevention of PRRS relies primarily on vaccination and the implementation of various preventive and control measures. Swine deaths caused by PRRS have resulted in significant economic losses to the pig industry worldwide. Non-structural protein 10 (NSP10) has helicase and adenosine triphosphatase (ATPase) activities that unwind DNA and RNA and play important roles in viral replication and transcription. Hence, it can be potentially used to develop novel reagents for the detection of PPRSV. This article reviews genetic variations, interaction with viral and host proteins, effects on PRRSV replication, immunomodulation, apoptosis, and viral virulence of NSP10, with the aim of providing a theoretical basis for the prevention and control of PRRS and drug development in the future.

16.
Sensors (Basel) ; 24(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38544262

RESUMO

Optical biosensors have a significant impact on various aspects of our lives. In many applications of optical biosensors, fluidic chambers play a crucial role in facilitating controlled fluid delivery. It is essential to achieve complete liquid replacement in order to obtain accurate and reliable results. However, the configurations of fluidic chambers vary across different optical biosensors, resulting in diverse fluidic volumes and flow rates, and there are no standardized guidelines for liquid replacement. In this paper, we utilize COMSOL Multiphysics, a finite element analysis software, to investigate the optimal fluid volume required for two types of fluidic chambers in the context of the oblique-incidence reflectivity difference (OI-RD) biosensor. We found that the depth of the fluidic chamber is the most crucial factor influencing the required liquid volume, with the volume being a quadratic function of the depth. Additionally, the required fluid volume is also influenced by the positions on the substrate surface bearing samples, while the flow rate has no impact on the fluid volume.


Assuntos
Técnicas Biossensoriais , Incidência , Software , Análise de Elementos Finitos
17.
Sci Total Environ ; 926: 171920, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527550

RESUMO

Solar energy, as a clean energy source, is becoming increasingly important in the global energy mix. However, particle deposition on the surface of photovoltaic (PV) panels can significantly reduce their power generation efficiency. In this study, the collision-deposition behaviour between silica particles and the surface of PV modules is investigated. The impact process of 13 µm silica particles on the glass surface was recorded by using a high-speed digital camera at various incident velocities and angles. A particle dynamics model was developed to predict the critical capture velocity of particles at different incident angles. It was observed that the critical capture velocity of the particles decreases as the angle of incidence increases. Subsequently, a correlation equation was established between the incident angle and the critical capture velocity, serving as the deposition criterion. Computational Fluid Dynamics (CFD) numerical simulation was employed to simulate particle deposition on PV surfaces under different wind speeds and installation tilting angles. The simulation results demonstrate that the mass of 13 µm silica particles deposited on the surface of PV panels decreases with increasing wind speed. Moreover, under identical inlet wind speeds, the particle deposition mass exhibits an initial decrease followed by a subsequent increase as the installation tilt angle of the PV panel increases. The distribution pattern of particle deposition on PV panel surfaces is diverse; however, predominantly concentrated at the mid-bottom region.

18.
Arch Microbiol ; 206(4): 183, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502272

RESUMO

This study aimed to reveal that the effect of biosurfactant on the dispersion and degradation of crude oil. Whole genome analysis showed that Pseudomonas aeruginosa GB-3 contained abundant genes involved in biosurfactant synthesis and metabolic processes and had the potential to degrade oil. The biosurfactant produced by strain GB-3 was screened by various methods. The results showed that the surface tension reduction activity was 28.6 mN·m-1 and emulsification stability was exhibited at different pH, salinity and temperature. The biosurfactant was identified as rhamnolipid by LC-MS and FTIR. The fermentation conditions of strain GB-3 were optimized by response surface methodology, finally the optimal system (carbon source: glucose, nitrogen source: ammonium sulfate, C/N ratio:16:1, pH: 7, temperature: 30-35 °C) was determined. Compared with the initial fermentation, the yield of biosurfactant increased by 4.4 times after optimization. In addition, rhamnolipid biosurfactant as a dispersant could make the dispersion of crude oil reach 38% within seven days, which enhanced the bioavailability of crude oil. As a biostimulant, it could also improve the activity of indigenous microorganism and increase the degradation rate of crude oil by 10-15%. This study suggested that rhamnolipid biosurfactant had application prospect in bioremediation of marine oil-spill.


Assuntos
Petróleo , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Tensoativos/química , Glicolipídeos/química , Petróleo/metabolismo
19.
Materials (Basel) ; 17(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38473628

RESUMO

Crevice corrosion (CC) behavior of 201 stainless steel (SS) in 1 M NaCl + x M HCl/y M NaOH solutions with various pH was investigated using SECM and optical microscopic observations. Results show that the CC was initiated by the decrease in pH value within the crevice. The pH value near the crevice mouth falls rapidly to 1.38 in the first 2 h in the strongly acidic solution, while the pH value was observed to rise firstly and then decrease in the neutral and alkaline solutions. It indicates there is no incubation phase in the CC evolution of 201-SS in a pH = 2.00 solution, while an incubation phase was observed in pH = 7.00 and 11.00 solutions. Additionally, there appeared to be a radial pH variation within the gap over time. The pH value is the lowest at the gap mouth, which is in line with the in situ optical observation result that the severely corroded region is at the mouth of the gap. The decrease in pH value inside results in the negative shift of open circuit potential (OCP) and the initiation of CC of 201-SS. The increased anodic dissolution rate in the acidic solution accelerates the breakdown of passive film inside, reducing the initiation time and stimulating the spread of CC.

20.
Bioorg Med Chem ; 102: 117657, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428068

RESUMO

The epidermal growth factor receptor (EGFR) has received significant attention as a potential target for glioblastoma (GBM) therapeutics in the past two decades. However, although cetuximab, an antibody that specifically targets EGFR, exhibits a high affinity for EGFR, it has not yet been applied in the treatment of GBM. Antibody-drug conjugates (ADCs) utilize tumor-targeting antibodies for the selective delivery of cytotoxic drugs, resulting in improved efficacy compared to conventional chemotherapy drugs. However, the effectiveness of cetuximab as a targeted antibody for ADCs in the treatment of GBM remains uncertain. In this study, we synthesized AGCM-22, an EGFR-targeted ADC derived from cetuximab, by conjugating it with the tubulin inhibitor monomethyl auristatin E (MMAE) using our Valine-Alanine Cathepsin B cleavable linker. In vitro experiments demonstrated that AGCM-22 effectively inhibited GBM cell proliferation through increased levels of apoptosis and autophagy-related cell death, whereas cetuximab alone had no anti-GBM effects. Additionally, both mouse and human orthotopic tumor models exhibited the selective tumor-targeting efficacy of AGCM-22, along with favorable metabolic properties and superior anti-GBM activity compared to temozolomide (TMZ). In summary, this study presents a novel ADC for GBM therapy that utilizes cetuximab as the tumor-targeting antibody, resulting in effective delivery of the cytotoxic drug payload.


Assuntos
Antineoplásicos , Glioblastoma , Imunoconjugados , Humanos , Animais , Camundongos , Cetuximab/farmacologia , Preparações Farmacêuticas , Glioblastoma/metabolismo , Anticorpos , Antineoplásicos/uso terapêutico , Receptores ErbB , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...